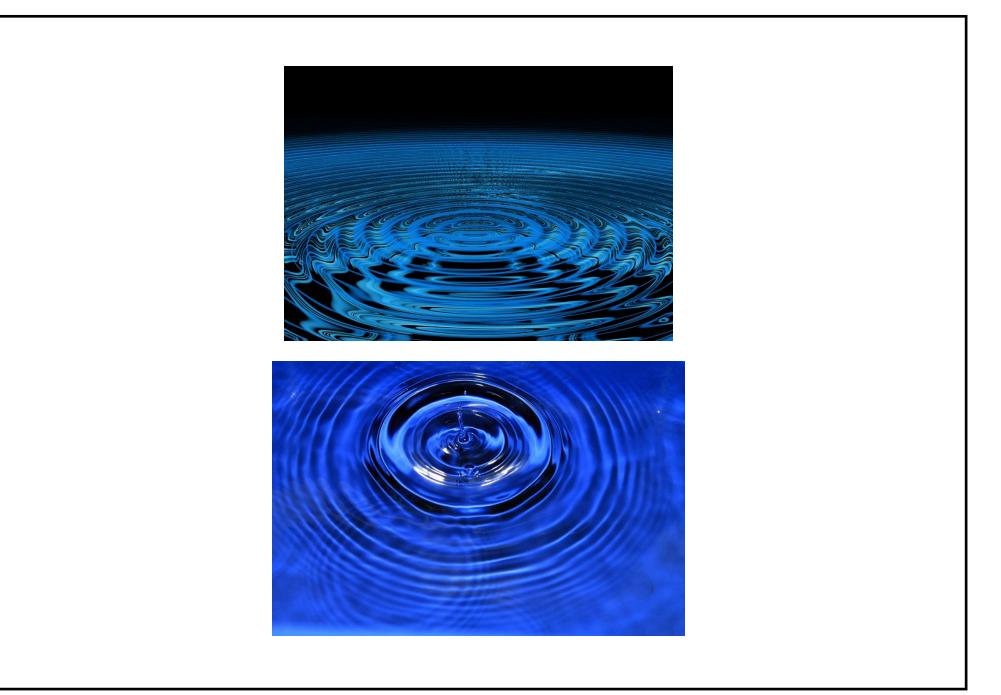
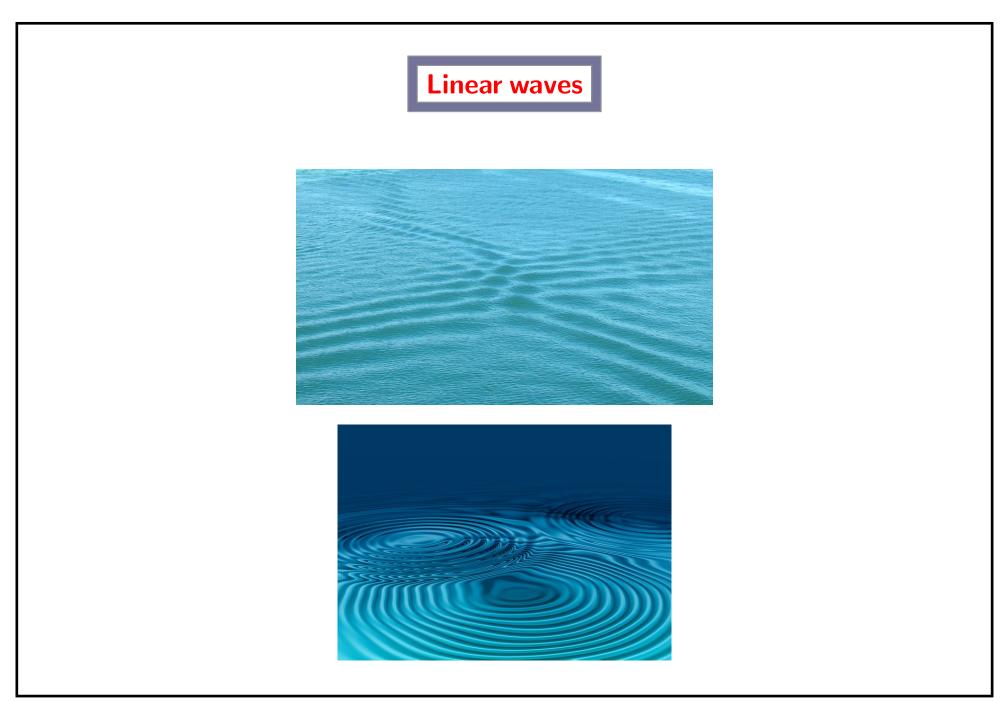
The mathematics of waves and black holes

Master in Applied Mathematics and Computation

José Natário

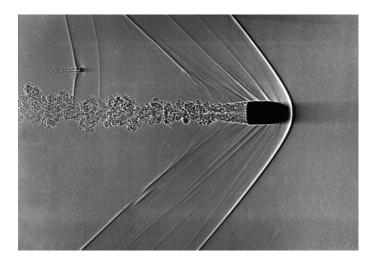
Departamento de Matemática Instituto Superior Técnico jnatar@math.tecnico.ulisboa.pt

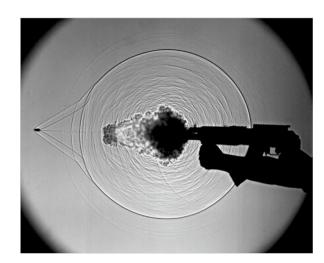


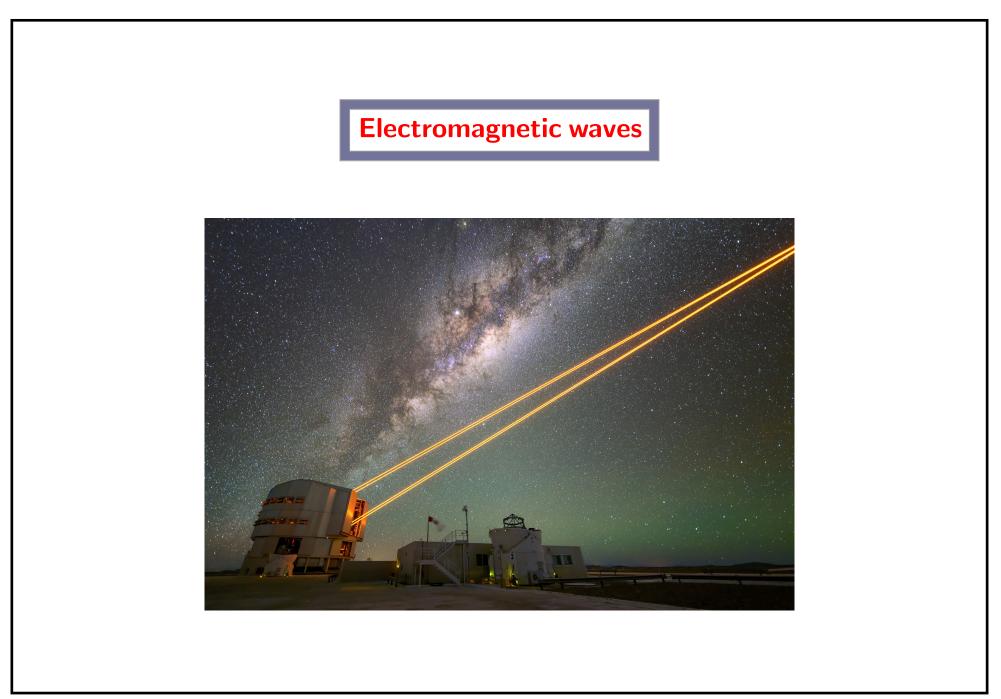


Sound waves

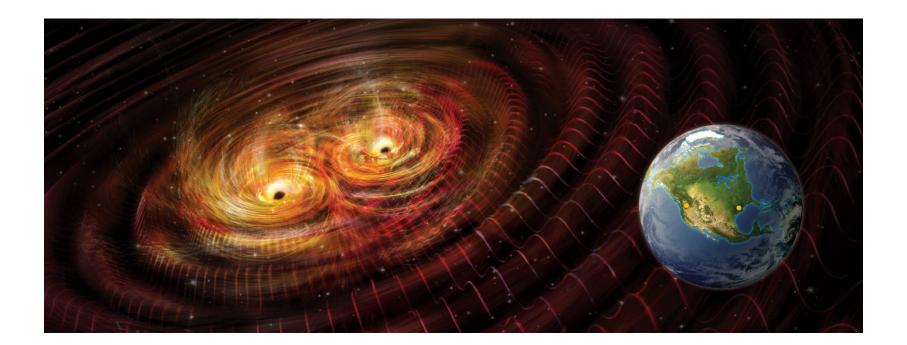
NavSource Naval History)







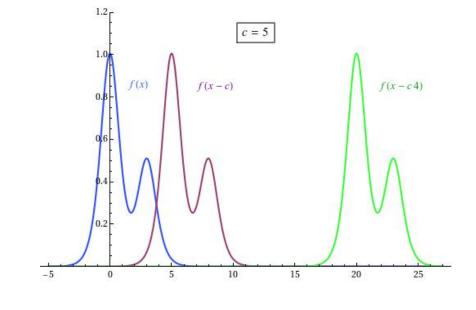
Gravitational waves

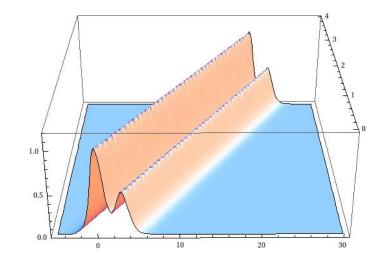


Mathematical definition of a wave

Prototype: traveling wave with velocity c.

$$u(x,t) = f(x - ct), \qquad c \in \mathbb{R}$$





Wave equation in one dimension

D'Alembert (1747) deduced the one-dimensional wave equation to study the vibration of a string:

$$\frac{1}{c^2}\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} \qquad \left(c^2 = \frac{T}{\mu}\right)$$

Changing variables to $\xi = x - ct$, $\eta = x + ct$, the wave equation is written

$$\frac{\partial^2 u}{\partial \xi \partial \eta} = 0,$$

and can be solved by integrating twice:

$$u = f(\xi) + g(\eta) = f(x - ct) + g(x + ct)$$

Wave equation in three dimensions

The generalization to three dimensions is obvious:

$$\frac{1}{c^2}\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$$

This is a linear partial differential equation, and gives a good description of (linear) sound waves, electromagnetic waves, and (linear) gravitational waves. It admits a conserved energy:

$$E(t) = \int_{\mathbb{R}^3} \left[\frac{1}{c^2} \left(\frac{\partial u}{\partial t} \right)^2 + \left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 + \left(\frac{\partial u}{\partial z} \right)^2 \right] dx dy dz$$

If u is a solution of the wave equation, then so are $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}$. Therefore we also have the conserved generalized energies

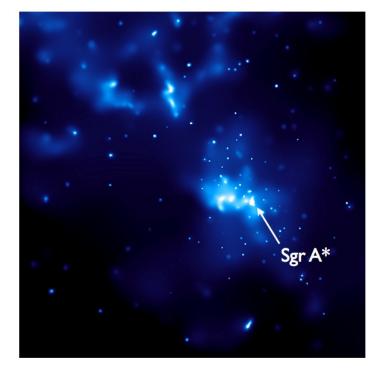
$$E_x(t) = \int_{\mathbb{R}^3} \left[\frac{1}{c^2} \left(\frac{\partial^2 u}{\partial t \partial x} \right)^2 + \left(\frac{\partial^2 u}{\partial x^2} \right)^2 + \left(\frac{\partial^2 u}{\partial y \partial x} \right)^2 + \left(\frac{\partial^2 u}{\partial z \partial x} \right)^2 \right] dx dy dz$$

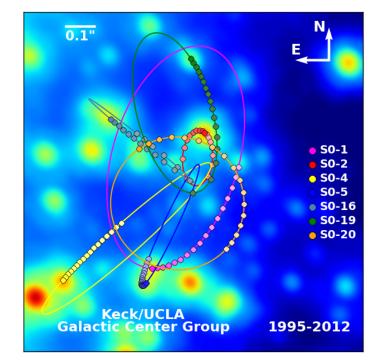
$$E_y(t) = \int_{\mathbb{R}^3} \left[\frac{1}{c^2} \left(\frac{\partial^2 u}{\partial t \partial y} \right)^2 + \left(\frac{\partial^2 u}{\partial x \partial y} \right)^2 + \left(\frac{\partial^2 u}{\partial y^2} \right)^2 + \left(\frac{\partial^2 u}{\partial z \partial y} \right)^2 \right] dx dy dz$$

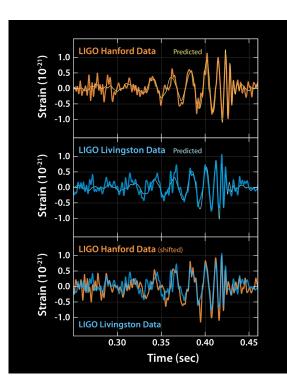
$$E_{z}(t) = \int_{\mathbb{R}^{3}} \left[\frac{1}{c^{2}} \left(\frac{\partial^{2} u}{\partial t \partial z} \right)^{2} + \left(\frac{\partial^{2} u}{\partial x \partial z} \right)^{2} + \left(\frac{\partial^{2} u}{\partial y \partial z} \right)^{2} + \left(\frac{\partial^{2} u}{\partial z^{2}} \right)^{2} \right] dx dy dz$$

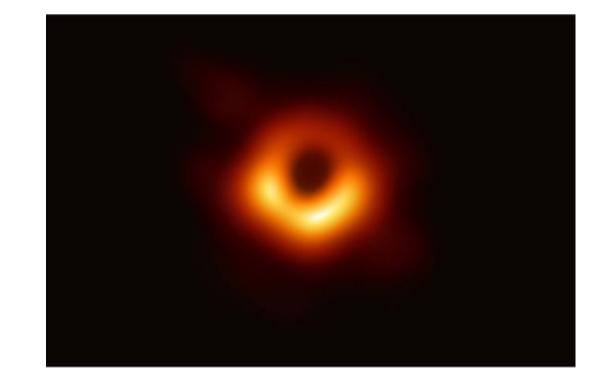
These can be used together with Sobolev's inequality to show that solutions with finite generalized energies are bounded (and even that they decay in time).

Black holes









Photonsphere Photon sphere, where photons get trapped in circular orbits Event Horizon, where no photons can escape Photons' paths are bent by the black hole's gravity Photons come from super-heated plasma of the accretion disk

Wave equation on a black hole background

The spacetime around a spherical black hole of mass M is modeled by the Schwarzschild Lorentzian metric:

$$g = -Vdt \otimes dt + V^{-1}dr \otimes dr + r^2 \left(d\theta \otimes d\theta + \sin^2 \theta d\varphi \otimes d\varphi \right)$$

where

$$V = 1 - \frac{2M}{r}$$

One can still write the wave equation by using the Levi-Civita connection of this metric:

$$d \star du = 0 \Leftrightarrow \nabla^{\alpha} \nabla_{\alpha} u = 0$$

If M = 0 this is the usual wave equation written in spherical coordinates.

One can use the divergence theorem to prove that again there is a conserved energy:

$$E(t) = \int_{\Sigma_t} T\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right) \left(1 - \frac{2M}{r}\right)^{-1} r^2 \sin\theta dr d\theta d\varphi$$

$$T = du \otimes du - \frac{1}{2}g^{-1}(du, du) g$$

is the energy-momentum tensor associated to u. Again using the Sobolev inequality, one can prove boundedness (and even decay) of finite energy solutions. New challenges: the event horizon and photonsphere trapping.

