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Waves
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Linear waves
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Sound waves
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Electromagnetic waves
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Gravitational waves
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Mathematical definition of a wave

Prototype: traveling wave with velocity c.

u(x, t) = f(x− ct), c ∈ R
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Wave equation in one dimension

D’Alembert (1747) deduced the one-dimensional wave equation to study the

vibration of a string:

1

c2
∂2u

∂t2
=
∂2u

∂x2

(
c2 =

T

µ

)

Changing variables to ξ = x− ct, η = x+ ct, the wave equation is written

∂2u

∂ξ∂η
= 0,

and can be solved by integrating twice:

u = f(ξ) + g(η) = f(x− ct) + g(x+ ct)
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Wave equation in three dimensions

The generalization to three dimensions is obvious:

1

c2
∂2u

∂t2
=
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

This is a linear partial differential equation, and gives a good description of

(linear) sound waves, electromagnetic waves, and (linear) gravitational waves.

It admits a conserved energy:

E(t) =

∫
R3

[
1

c2

(
∂u

∂t

)2

+

(
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂u

∂z

)2
]
dxdydz
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If u is a solution of the wave equation, then so are ∂u
∂x ,

∂u
∂y ,

∂u
∂z . Therefore we

also have the conserved generalized energies

Ex(t) =

∫
R3

[
1

c2

(
∂2u

∂t∂x

)2

+

(
∂2u

∂x2

)2

+

(
∂2u

∂y∂x

)2

+

(
∂2u

∂z∂x

)2
]
dxdydz

Ey(t) =

∫
R3

[
1

c2

(
∂2u

∂t∂y

)2

+

(
∂2u

∂x∂y

)2

+

(
∂2u

∂y2

)2

+

(
∂2u

∂z∂y

)2
]
dxdydz

Ez(t) =

∫
R3

[
1

c2

(
∂2u

∂t∂z

)2

+

(
∂2u

∂x∂z

)2

+

(
∂2u

∂y∂z

)2

+

(
∂2u

∂z2

)2
]
dxdydz

These can be used together with Sobolev’s inequality to show that solutions

with finite generalized energies are bounded (and even that they decay in time).
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Black holes
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Photonsphere

14



Wave equation on a black hole background

The spacetime around a spherical black hole of mass M is modeled by the

Schwarzschild Lorentzian metric:

g = −V dt⊗ dt+ V −1dr ⊗ dr + r2
(
dθ ⊗ dθ + sin2 θdϕ⊗ dϕ

)
where

V = 1− 2M

r

One can still write the wave equation by using the Levi-Civita connection of

this metric:

d ? du = 0⇔ ∇α∇αu = 0

If M = 0 this is the usual wave equation written in spherical coordinates.

15



One can use the divergence theorem to prove that again there is a conserved

energy:

E(t) =

∫
Σt

T

(
∂

∂t
,
∂

∂t

)(
1− 2M

r

)−1

r2 sin θdrdθdϕ

where

T = du⊗ du− 1

2
g−1(du, du) g

is the energy-momentum tensor associated to u. Again using the Sobolev

inequality, one can prove boundedness (and even decay) of finite energy

solutions. New challenges: the event horizon and photonsphere trapping.
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Are they stable?
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